A Mini Review of Short Tandem Repeat (STR) as DNA Profiling Markers in Forensic Biology
DOI:
https://doi.org/10.31851/sainmatika.v22i1.17388Keywords:
criminal cases, DNA profiling methods, genetic materials, short tandem repeatAbstract
The use of forensic biology methods plays an important role in handling criminal cases such as sexual violence, murder, and assault to enhance the quality of criminal investigation. These methods use polymorphic genetic markers such as short tandem repeat (STR) or microsatellites to identify individuals based on the DNA profile of the cell nucleus left on the evidence. STR markers are considered suitable for forensic analysis due to their ability to work with degraded DNA and the high heterozygosity, providing strong discrimination capabilities. The DNA profiling process involves collecting evidence samples, DNA extraction, PCR amplification, capillary electrophoresis, and comparison with national or international DNA databases. All processes follow standards to ensure accurate results. Challenges in STR analysis include the need for skilled analysts, protocol updates, database expansion, and ethical considerations regarding genetic data. Improvements in the forensic system will enhance law enforcement effectiveness and strengthen public trust in the future of forensic science.
References
Adouani, B., Rahmoune, I., & Filali, H. (2023). IMPACT OF SAMPLE STORAGE CONDITIONS ON FORENSIC TOXICOLOGY ANALYSIS – A REVIEW. Universal Journal of Pharmaceutical Research. https://doi.org/10.22270/ujpr.v8i1.901
Allen, R. W., Fu, J., Reid, T. M., & Baird, M. (2007). Considerations for the interpretation of STR results in cases of questioned half‐sibship. Transfusion, 47(3), 515–519. https://doi.org/10.1111/j.1537-2995.2006.01144.x
Asif, S., Khan, M., Arshad, M. W., & Shabbir, M. I. (2021). PCR Optimization for Beginners:AStep by Step Guide. Research in Molecular Medicine, 9(2), 81–102.
Badu-Boateng, A., Twumasi, P., Salifu, S. P., & Afrifah, K. A. (2018). A comparative study of different laboratory storage conditions for enhanced DNA analysis of crime scene soil-blood mixed sample. Forensic Science International, 292, 97–109. https://doi.org/10.1016/j.forsciint.2018.09.007
Budowle, B., Schutzer, S. E., Burans, J. P., Beecher, D. J., Cebula, T. A., Chakraborty, R., Cobb, W. T., Fletcher, J., Hale, M. L., Harris, R. B., Heitkamp, M. A., Keller, F. P., Kuske, C., LeClerc, J. E., Marrone, B. L., McKenna, T. S., Morse, S. A., Rodriguez, L. L., Valentine, N. B., & Yadev, J. (2006). Quality Sample Collection, Handling, and Preservation for an Effective Microbial Forensics Program. Applied and Environmental Microbiology, 72(10), 6431–6438. https://doi.org/10.1128/AEM.01165-06
Bukyya, J. L., Tejasvi, M. L. A., Avinash, A., P., C. H., Talwade, P., Afroz, M. M., Pokala, A., Neela, P. K., Shyamilee, T. K., & Srisha, V. (2021). DNA Profiling in Forensic Science: A Review. Global Medical Genetics, 08(04), 135–143. https://doi.org/10.1055/s-0041-1728689
Butler. (2015). The future of forensic DNA analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1674), 20140252. https://doi.org/10.1098/rstb.2014.0252
Butler, J. M., Buel, E., Crivellente, F., & McCord, B. R. (2004). Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. ELECTROPHORESIS, 25(10–11), 1397–1412. https://doi.org/10.1002/elps.200305822
Canturk, K. M., Emre, R., Kınoglu, K., Başpınar, B., Sahin, F., & Ozen, M. (2014). Current Status of the Use of Single-Nucleotide Polymorphisms in Forensic Practices. Genetic Testing and Molecular Biomarkers, 18(7), 455–460. https://doi.org/10.1089/gtmb.2013.0466
Chauhan, T. (2018). Polymerase Chain Reaction (PCR)- Definition, Principle, Steps, Procedure, Protocol, Applications and Types [Online post]. https://geneticeducation.co.in/polymerase-chain-reaction-pcr/#google_vignette
Chiu, R., Rajan-Babu, I.-S., Friedman, J., & Birol, I. (2021). Straglr: Discovering and Genotyping Tandem Repeat Expansions Using Whole Genome Long-Read Sequences [Online post]. Genome Sciences Center. https://www.bcgsc.ca/news/straglr-new-software-tool-targeted-genotyping-and-repeat-expansion-detection
Dieffenbach, C. W., Lowe, T. M., & Dveksler, G. S. (1993). General concepts for PCR primer design. Genome Research, 3(3), S30–S37. https://doi.org/10.1101/gr.3.3.S30
Elkins, K. M. (2015). Primer Design for PCR Reactions in Forensic Biology. Springer Science+Business Media New York. https://doi.org/10.1007/978-1-4939-2365-6_2
Farhaeni, M., & Martini, S. (2023). PENTINGNYA PENDIDIKAN NILAI-NILAI BUDAYA DALAM MEMPERTAHANKAN WARISAN BUDAYA LOKAL DI INDONESIA. JURNAL ILMU SOSIAL dan ILMU POLITIK, 3(2). https://doi.org/10.30742/juispol.v3i2.3483
Garc�a, A. A., Mu�oz, I., Pestoni, C., Lareu, M. V., Rodr�guez-Calvo, M. S., & Carracedo, A. (1996). Effect of environmental factors on PCR-DNA analysis from dental pulp. International Journal of Legal Medicine, 109(3), 125–129. https://doi.org/10.1007/BF01369671
Garibyan, L., & Avashia, N. (2013). Polymerase Chain Reaction. Journal of Investigative Dermatology, 133(3), 1–4. https://doi.org/10.1038/jid.2013.1
Genetic Discrimination Observatory. (2023). MAP - DNA Profiles in G20 and EU Countries [Dataset]. https://gdo.global/en/resources/DNA-profiles-in-G20-and-EU-countries
Genetics. (2024). DNA extraction [Online post]. https://www.humankaryotype.com/methodology/dna-extraction#sd
Giusti, W. G., & Adriano, T. (1993). Synthesis and characterization of 5’-fluorescent-dye-labeled oligonucleotides. Genome Research, 2(3), 223–227. https://doi.org/10.1101/gr.2.3.223
Glynn, C. L. (2022). Bridging Disciplines to Form a New One: The Emergence of Forensic Genetic Genealogy. Genes, 13(8), 1381. https://doi.org/10.3390/genes13081381
Goodwin, W., Linacre, A., & Hadi, S. (2007). An Introduction to Forensic Genetics.
Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C., & Baird, D. J. (2011). Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLoS ONE, 6(4), e17497. https://doi.org/10.1371/journal.pone.0017497
Halim, A., Indarti, E., & Santoso, B. (2022). The Role of Forensic Science in Criminal Acts of Murder Cases in Indonesia. Open Access Macedonian Journal of Medical Sciences, 10(A), 951–958. https://doi.org/10.3889/oamjms.2022.9323
Hänggi, N. V., Bleka, Ø., Haas, C., & Fonneløp, A. E. (2023). Quantitative PCR analysis of bloodstains of different ages. Forensic Science International, 350, 111785. https://doi.org/10.1016/j.forsciint.2023.111785
Hashim, H. O., & Al-Shuhaib, M. B. (2019). Exploring the Potential and Limitations of PCR-RFLP and PCR-SSCP for SNP Detection: A Review. Journal of Applied Biotechnology Reports, 6(4), 137–144. https://doi.org/10.29252/JABR.06.04.02
Houck, M. M. (Ed.). (2016). Forensic biology. Elsevier/AP, Academic Press is an imprint of Elsevier.
Jaiswal, A. K., & Nayyer, S. (2023). DNA profiling in forensic investigation – A review. IP International Journal of Forensic Medicine and Toxicological Sciences, 8(1), 14–22. https://doi.org/10.18231/j.ijfmts.2023.003
Jarcho, J. (2000). Restriction Fragment Length Polymorphism Analysis. Current Protocols in Human Genetics, 2.7., 1–15. https://doi.org/10.1002/0471142905.hg0207s01
Jickells, S., & Negrusz, A. (Eds.). (2008). Clarke’s analytical forensic toxicology. Pharmaceutical Press.
Jordan, D., & Mills, D. (2021). Past, Present, and Future of DNA Typing for Analyzing Human and Non-Human Forensic Samples. Frontiers in Ecology and Evolution, 9, 646130. https://doi.org/10.3389/fevo.2021.646130
Kimpton, C., Fisher, D., Watson, S., Adams, M., Urquhart, A., Lygo, J., & Gill, P. (1994). Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. International Journal of Legal Medicine, 106(6), 302–311. https://doi.org/10.1007/BF01224776
Lasota, T. (2014). Purification of Human DNA for DNA Profiling from Body Fluid Contaminated Soil using Superparamagnetic Iron Oxide Nanoparticles (Spions).
Lu, T.-Y., The Human Genome Structural Variation Consortium, Munson, K. M., Lewis, A. P., Zhu, Q., Tallon, L. J., Devine, S. E., Lee, C., Eichler, E. E., & Chaisson, M. J. P. (2021). Profiling variable-number tandem repeat variation across populations using repeat-pangenome graphs. Nature Communications, 12(1), 4250. https://doi.org/10.1038/s41467-021-24378-0
Manjunath, B. C., Chandrashekar, B. R., Mahesh, M., & Vatchala Rani, R. M. (2011). DNA Profiling and forensic dentistry – A review of the recent concepts and trends. Journal of Forensic and Legal Medicine, 18(5), 191–197. https://doi.org/10.1016/j.jflm.2011.02.005
Martin, B., & Linacre, A. (2020). Direct PCR: A review of use and limitations. Science & Justice, 60(4), 303–310. https://doi.org/10.1016/j.scijus.2020.04.003
McCord, B. R., Gauthier, Q., Cho, S., Roig, M. N., Gibson-Daw, G. C., Young, B., Taglia, F., Zapico, S. C., Mariot, R. F., Lee, S. B., & Duncan, G. (2019). Forensic DNA Analysis. Analytical Chemistry, 91(1), 673–688. https://doi.org/10.1021/acs.analchem.8b05318
McDonald, C., Taylor, D., & Linacre, A. (2024). PCR in Forensic Science: A Critical Review. Genes, 15(4), 438. https://doi.org/10.3390/genes15040438
Mundotiya, N., Choudhary, M., Jaiswal, S., & Ahmad, U. (2023). Review of the Efficiency of Ten Different Commercial Kits for Extracting DNA from Soil Mixed Biological Samples. Journal of Forensic Science and Research, 7(1), 017–024. https://doi.org/10.29328/journal.jfsr.1001045
Neves, C., & Zieger, M. (2023). “Total Human DNA Sampling” – Forensic DNA profiles from large areas. Forensic Science International: Genetics, 67, 102939. https://doi.org/10.1016/j.fsigen.2023.102939
Ocindex. (2023). Countries with the Highest Criminality rate in the World [Dataset]. https://ocindex.net/rankings?f=rankings&view=List&group=Country
Panneerchelvam, S., & Norazmi, M. N. (2003). FORENSIC DNA PROFILING AND DATABASE.
Phillips, C., Prieto, L., Fondevila, M., Salas, A., Gómez-Tato, A., Álvarez-Dios, J., Alonso, A., Blanco-Verea, A., Brión, M., Montesino, M., Carracedo, Á., & Lareu, M. V. (2009). Ancestry Analysis in the 11-M Madrid Bomb Attack Investigation. PLoS ONE, 4(8), e6583. https://doi.org/10.1371/journal.pone.0006583
Prinz, M., Carracedo, A., Mayr, W. R., Morling, N., Parsons, T. J., Sajantila, A., Scheithauer, R., Schmitter, H., & Schneider, P. M. (2007). DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Science International: Genetics, 1(1), 3–12. https://doi.org/10.1016/j.fsigen.2006.10.003
Rapley, R., & Whitehouse, D. (2007). Molecular forensics. J. Wiley.
Roewer, L. (2013). DNA fingerprinting in forensics: Past, present, future. Investigative Genetics, 4(1), 22. https://doi.org/10.1186/2041-2223-4-22
Roux, C., Willis, S., & Weyermann, C. (2021). Shifting forensic science focus from means to purpose: A path forward for the discipline? Science & Justice, 61(6), 678–686. https://doi.org/10.1016/j.scijus.2021.08.005
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., HoRN, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. 239.
Sanchez-Vega, B. (2008). Capillary Electrophoresis of DNA. Molecular Biomethods Handbook, 2nd Edition, 65–87.
Shen, M., & Vieira, D. N. (2016). Forensic science: Defending justice. Forensic Sciences Research, 1(1), 1–2. https://doi.org/10.1080/20961790.2016.1243083
Silva, R. H. A., Peres, A. S., Oliveira, R. N., Oliveira, F. T., & Peres, S. H. d C. (2007). Journal of Applied Oral Science, 15(3).
Smith, A., & Nelson, R., J. (2003). Capillary Electrophoresis of DNA. Current Protocols in Nucleic Acid Chemistry.
Starnbach, M. N., Falkow, S., & Tompkins, L. S. (1989). Species-specific detection of Legionella pneumophila in water by DNA amplification and hybridization. Journal of Clinical Microbiology, 27(6), 1257–1261. https://doi.org/10.1128/jcm.27.6.1257-1261.1989
Sultana, G. N. N., & Sultan, M. Z. (2018). Medicolegal Aspects and Examination Techniques in Exhumation Cases with Alleged Human Rights Violation. Journal of Forensic Sciences & Criminal Investigation, 9(1). https://doi.org/10.19080/JFSCI.2018.09.555755
Tamaki, K., Kaszynski, R. H., Yuan, Q., Yoshida, K., Okuno, T., & Tsuruyama, T. (2009). Likelihood evaluation using 15 common short tandem repeat loci: A practical and simulated approach to establishing personal identification via sibling/parental assessments. Transfusion, 49(3), 578–584. https://doi.org/10.1111/j.1537-2995.2008.02024.x
Tang, S., & Huang, T. (2010). Characterization of Mitochondrial DNA Heteroplasmy Using a Parallel Sequencing System. BioTechniques, 48(4), 287–296. https://doi.org/10.2144/000113389
Uberoi, D., Palmour, N., & Joly, Y. (2024). The advent of forensic DNA databases: It’s time to agree on some international governance principles! Forensic Science International: Genetics, 72, 103095. https://doi.org/10.1016/j.fsigen.2024.103095
Udogadi, N. S., Abdullahi, M. K., Bukola, A. T., Imose, O. P., & Esewi, A. D. (2020). Forensic DNA Profiling: Autosomal Short Tandem Repeat as a Prominent Marker in Crime Investigation. Malaysian Journal of Medical Sciences, 27(4), 22–35. https://doi.org/10.21315/mjms2020.27.4.3
Van Geystelen, A., Decorte, R., & Larmuseau, M. H. D. (2013). Updating the Y-chromosomal phylogenetic tree for forensic applications based on whole genome SNPs. Forensic Science International: Genetics, 7(6), 573–580. https://doi.org/10.1016/j.fsigen.2013.03.010
Vidaki, A., & Kayser, M. (2018). Recent progress, methods and perspectives in forensic epigenetics. Forensic Science International: Genetics, 37, 180–195. https://doi.org/10.1016/j.fsigen.2018.08.008
Vuylsteke, M., Peleman, J. D., & Van Eijk, M. J. (2007). AFLP technology for DNA fingerprinting. Nature Protocols, 2(6), 1387–1398. https://doi.org/10.1038/nprot.2007.175
Walsh, P. S., Metzger, D. A., & Higuchi, R. (2013). Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. BioTechniques, 54(3), 134–139. https://doi.org/10.2144/000114018
Wyner, N., Barash, M., & McNevin, D. (2020). Forensic Autosomal Short Tandem Repeats and Their Potential Association With Phenotype. Frontiers in Genetics, 11, 884. https://doi.org/10.3389/fgene.2020.00884
Yoshida, K., Yayama, K., Hatanaka, A., & Tamaki, K. (2011). Efficacy of extended kinship analyses utilizing commercial STR kit in establishing personal identification. Legal Medicine, 13(1), 12–15. https://doi.org/10.1016/j.legalmed.2010.09.001
Youngest, R., Saamia, V., Oktaviani, D. A., Aritonang, S. B., Wiranatha, I. M., & Rofiq, I. (2022). Str Locus Mutations In Paternity Case. Jurnal Biosains Pascasarjana, 24(1), 34–49. https://doi.org/10.20473/jbp.v24i1.2022.34-49
Yudianto, A., Sosiawan, A., Palupi, R., & Novita, M. (2022). Sibling Analysis Using Mitochondrial DNA Displacement Loop (mtDNA D-Loop) Region in The Identification of Madurese Population. Sapporo Medical Journal, 56(04).

Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.